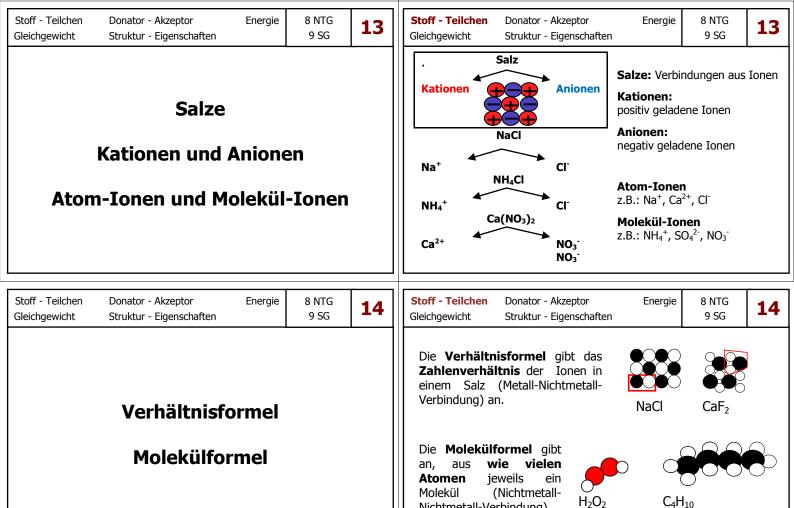
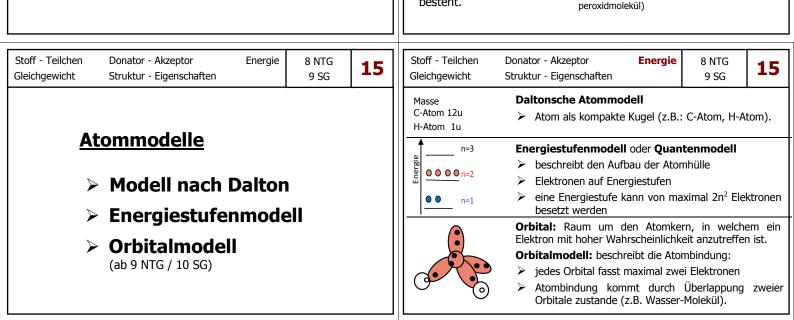


Kalkwasserprobe → Kohlenstoffdioxid

Kohlstoffdioxid bildet in Kalkwasser (Calciumhydroxid-Lösung)

schwer lösliches Calciumcarbonat (Kalk) → Trübung

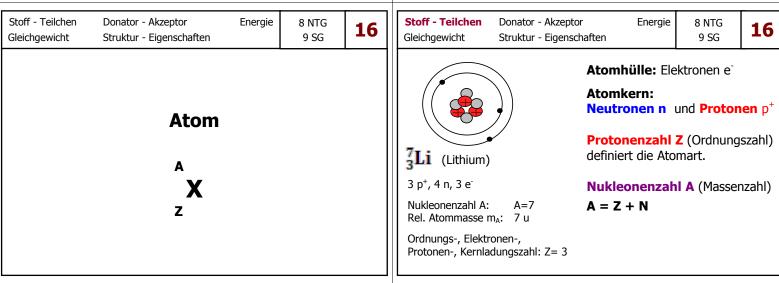



molekül

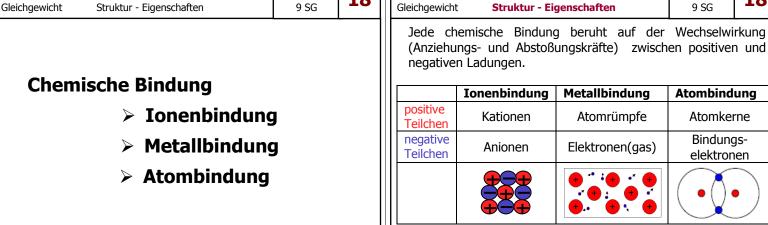
molekül

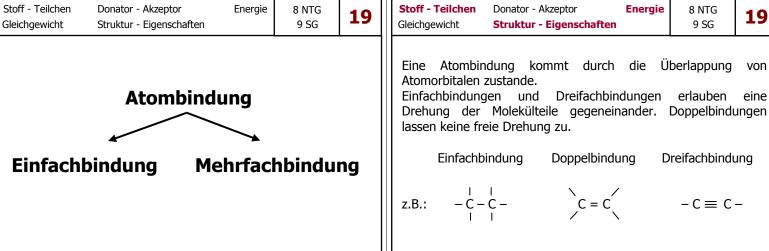
molekül

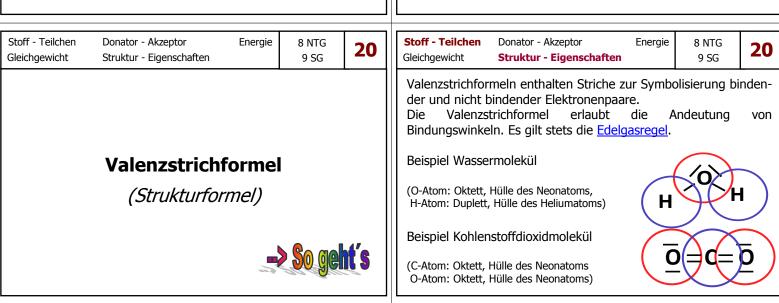
molekül

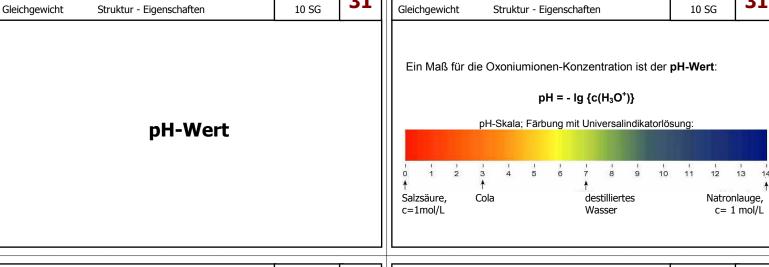


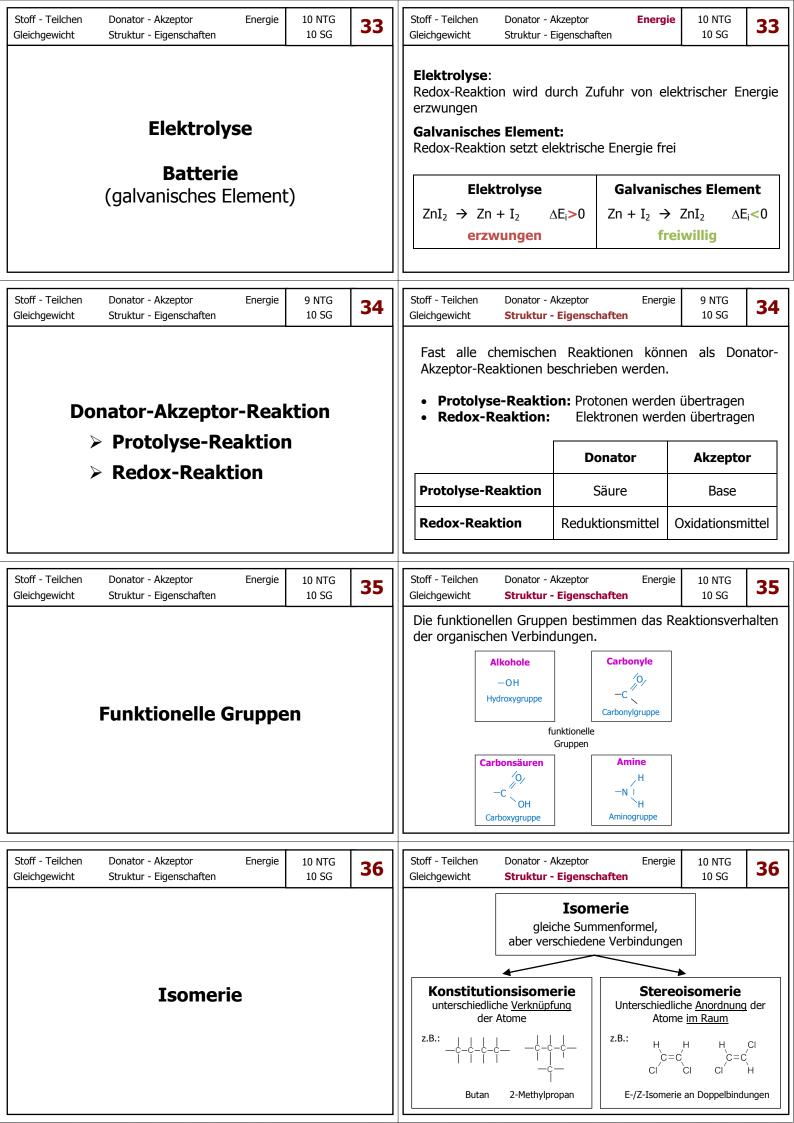
Nichtmetall-Verbindung)


besteht.

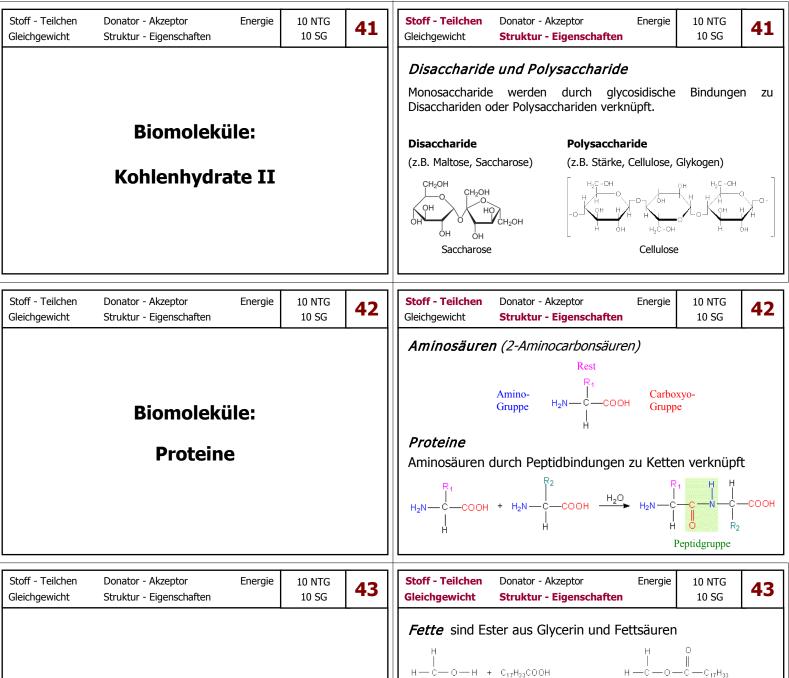

(Wasserstoff-

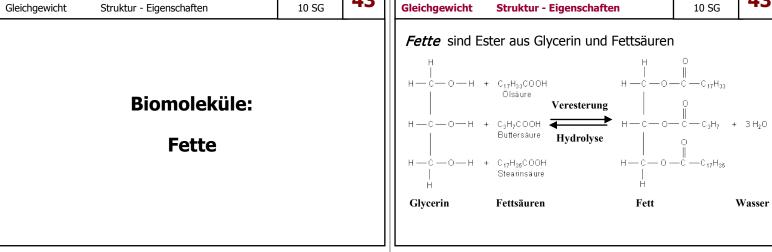

(Butanmolekül)




Stoff - Teilchen Donator - Akzeptor Energie 8 NTG Gleichgewicht Struktur - Eigenschaften 9 SG 21	Stoff - Teilchen Donator - Akzeptor Energie 8 NTG Gleichgewicht Struktur - Eigenschaften 9 SG 21					
Teilchenmasse (Atom-, Molekül-, Ionenmasse)	Die Masse eines Teilchens (Atom, Molekül, Ion) kann in der Einheit Gramm g oder in der atomaren Masseneinheit u angegeben werden. Ein u ist definiert als der 12. Teil der Masse eines Kohlenstoffatoms ¹² C. 1u = 1,66 · 10 ⁻²⁴ g 1g = 6,022 · 10 ²³ u					
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 9 SG	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 9 SG					
Stoffmenge n [n] = 1 mol	Angabe der Quantität einer Stoffportion durch: Masse m, Volumen V, Teilchenanzahl N, Stoffmenge n V $(H_2O) = 11$ m $(H_2O) = 1000g$ Die Stoffmenge n ist der Teilchenanzahl N proportional. 1 Mol ist die Stoffmenge einer Stoffportion, die aus ebenso vielen Teilchen (Atomen, Molekülen, Ionen) besteht, wie Atome in 12 g des Kohlenstoffatoms ^{12}C enthalten sind. 1 mol entspricht 6,022 $^{\circ}$ 10 23 Teilchen					
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 9 SG	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 9 SG					
Zusammenhang zwischen Quantitäts- und Umrechnungsgrößen	$n = \frac{m}{M} \qquad \text{n Stoffmenge [mol]}$ $n = \frac{V}{V_m} \qquad \text{m Atomare Masse}$ $n = \frac{N}{N_A} \qquad \text{N Molare Masse } [^9/_{\text{mol}}]$ $n = \frac{N}{N_A} \qquad \text{V Volumen [I]}$ $n = c \cdot V \qquad \text{N Teilchenanzahl}$ $N = \frac{m}{m_A} \qquad \text{N Avogadrokonstante } (6,022 \cdot 10^{23} \text{mol}^{-1})$ $c \qquad \text{Konzentration } [^{\text{mol}}/_{\text{I}}]$					
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG					
Elektronegativität EN	 Elektronegativität ➤ Eigenschaft der Atome, Bindungselektronen anzuziehen ➤ Die Atombindung ist umso polarer, je größer die Elektronegativitätsdifferenz Δ EN ist. ➤ Die EN hängt von der Kernladung und der Größe der Atome ab: Abnahme Abnahme					

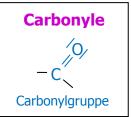
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Gleichgewicht Donator - Akzeptor Struktur - Eigenschaften	Energie 9 NTG 10 SG 25				
Intermolekulare Wechselwirkungen > Van der Waals WW > Dipol-Dipol-WW > Wasserstoffbrücken	van der Waals WW → Anziehungskräfte zwischen spontanen und induzierten Dipolen → steigen mit zunehmender Kontaktfläche und Molekülmasse → wirken zwischen allen Molekülen (auch unpolaren) Dipol-Dipol-WW → WW zwischen permanenten Dipol-Molekülen (z.B. HCl) Wasserstoffbrücken → sind bei geringer Molekülgröße die stärksten WW → kommen bei Wasserstoffverbindungen des Stickstoffs, des Sauerstoffs und des Fluors vor (NH ₃ , H ₂ O, HF)					
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG 26	Stoff - Teilchen Donator - Akzeptor Gleichgewicht Struktur - Eigenschaften	Energie 9 NTG 10 SG 26				
Säure - saure Lösung	Säure: Protonendonator Saure Lösungen enthalten mehr Oxonium- als Hydroxidionen: $n (H_3O^+) > n (OH^-)$					
neutrale Lösung	Neutrale Lösungen enthalten gleich viel Teilchen beider Ionensorten: $n (H_3O^+) = n (OH^-)$					
Base – basische / alkalische Lösung	Base: Protonenakzeptor					
	Alkalische Lösungen enthalten mehr Hyd $n (H_3O^+) < n (O^-)$					
Stoff - Teilchen Donator - Akzeptor Energie 9 NTG	Stoff - Teilchen Donator - Akzeptor	Energie 9 NTG 27				
Gleichgewicht Struktur - Eigenschaften 10 SG	Gleichgewicht Struktur - Eigenschaften	10 SG				
	Säure	Säure-Anion				
Gleichgewicht Struktur - Eigenschaften 10 SG	Säure "Salzsäure" HCl ⇒ in Urinsteinentferner Salpetersäure HNO ₃ ⇒ in Dünger	Säure-Anion Chlorid Cl				
	Säure "Salzsäure" HCl ⇒ in Urinsteinentferner Salpetersäure HNO ₃ ⇒ in Dünger Schwefelsäure H ₂ SO ₄ ⇒ in Autobatterien; im sauren Regen	Säure-Anion Chlorid Cl Nitrat NO ₃ Sulfat SO ₄ 2-				
Gleichgewicht Struktur - Eigenschaften 10 SG	Säure "Salzsäure" HCI ⇒ in Urinsteinentferner Salpetersäure HNO ₃ ⇒ in Dünger Schwefelsäure H ₂ SO ₄	Säure-Anion Chlorid Cl Nitrat NO ₃ Sulfat SO ₄ Carbonat CO ₃ Phosphat PO ₄ Carbonat PO ₄				
Gleichgewicht Struktur - Eigenschaften 10 SG	Säure "Salzsäure" HCl ⇒ in Urinsteinentferner Salpetersäure HNO ₃ ⇒ in Dünger Schwefelsäure H ₂ SO ₄ ⇒ in Autobatterien; im sauren Regen Kohlensäure H ₂ CO ₃ ⇒ in Erfrischungsgetränken Phosphorsäure H ₃ PO ₄	Säure-Anion Chlorid Cl Nitrat NO ₃ Sulfat SO ₄ Carbonat CO ₃ Phosphat PO ₄ Carbonat PO ₄				
Gleichgewicht Struktur - Eigenschaften 10 SG Wichtige Säuren Stoff - Teilchen Donator - Akzeptor Energie 9 NTG	Säure "Salzsäure" HCI ⇒ in Urinsteinentferner Salpetersäure HNO₃ ⇒ in Dünger Schwefelsäure H₂SO₄ ⇒ in Autobatterien; im sauren Regen Kohlensäure H₂CO₃ ⇒ in Erfrischungsgetränken Phosphorsäure H₃PO₄ ⇒ in geringen Mengen in Cola enthalten Stoff - Teilchen Donator - Akzeptor	Säure-Anion Chlorid Cl Nitrat NO ₃ Sulfat SO ₄ Carbonat CO ₃ Phosphat PO ₄ Energie 9 NTG 28				


Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	9 NTG 10 SG	29	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
Neutralisation					Protonenübergang von Oxonium-Ionen auf Hydroxid-Ionen unter Wasserbildung: $H_3O^+ + OH^- \rightarrow 2 \ H_2O$ Bei der Reaktion äquivalenter Mengen einer starken Säure mit einer starken Base bildet sich eine neutrale Lösung (pH=7). Säure + Base \rightarrow Wasser + Salz z.B. HCl + NaOH \rightarrow H ₂ O + NaCl				
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	9 NTG 10 SG	30	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
Säure-Base-Titration					Quantitatives Verfahren zur Bestimmung einer unbekannten Konzentration eines gelösten Stoffes (z.B. Säure) durch schrittweise Zugabe einer Lösung bekannter Konzentration (Titer-Lösung, z.B. Lauge) bis zum Äquivalenzpunkt ÄP (zu erkennen an der Änderung der Indikatorfarbe). Am ÄP gilt für die Titration von Säuren und Basen: \mathbf{n} (Säure) = \mathbf{n} (Base) $n = c \cdot V$				
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	9 NTG 10 SG	31	Stoff - Teilchen Donator - Akzeptor Energie 9 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
					Ein Maß für die Oxoniumionen-Konzentration ist der pH-Wert : $pH = - \lg \{c(H_3O^+)\}$				

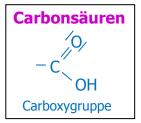


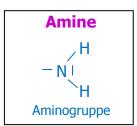
		_						
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Energie Struktur - Eigenschaften	9 NTG 10 SG	32	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	9 NTG 10 SG	32
				Oxidation: Reduktion:	Abgabe von Elektrone Aufnahme von Elektro	•	dationszahl s dationszahl s	• ,
Oxidation und Reduktion				Oxidationsmittel: nimmt Elektronen auf und wird dabei selbst reduziert Reduktionsmittel:				
		-> S o g€	ht's	gibt Elektrone	en ab und wird dabei se	elbst oxidi	iert	

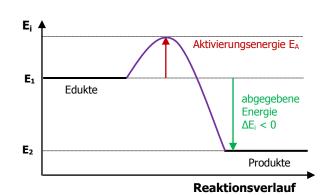
Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
Elektrophil - Nukleophil (Donator-Akzeptor-Prinzip)	Das Prinzip der Donator-Akzeptor-Reaktionen kann auf Elektronenpaare angewendet werden. Nukleophile Teilchen mit freien Elektronenpaaren reagieren stets mit elektrophilen Teilchen, welche zusätzliche Bindungen ausbilden können. Organische Reaktionsmechanismen werden oft nach dem kleineren Teilchen benannt, z.B. elektrophile Addition. Die Begriffe Nukleophil und Elektrophil gehören aber zusammen wie z.B. Säure und Base.				
Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
Organische Reaktionstypen I	Organische Verbindungen mit Einfachbindungen (Alkane, Alkohole, Halogenalkane) haben die Tendenz zu Substitutionsreaktionen : I I				
Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG				
Organische Reaktionstypen II	Kondensationsreaktion: zwei Moleküle verbinden sich miteinander unter Abspaltung eines kleinen Moleküls (z.B. H ₂ O) Hydrolyse: Spaltung einer Verbindung durch Reaktion mit Wasser				
Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG	Stoff - Teilchen Donator - Akzeptor Energie 10 NTG Gleichgewicht Struktur - Eigenschaften 10 SG 40				
Biomoleküle: Kohlenhydrate I	Monosaccharide sind entweder Polyhydroxyaldehyde oder Polyhydroxyketone z.B.: OHOME CH2OH HOH HOH HOH HOH HOH HOH HOH HOH HOH H				

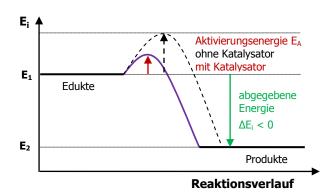


Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	44	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	44


Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	45	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	45
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	46	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	46
		-							
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	47	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	47
Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	48	Stoff - Teilchen Gleichgewicht	Donator - Akzeptor Struktur - Eigenschaften	Energie	10 NTG 10 SG	48




Hydroxygruppe



funktionelle Gruppen

